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Effect of Breit interaction on resonant excitation of highly
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Abstract. Resonant excitation or resonant electron scattering is a two step process in which Auger rates
are involved in both steps. First an electron is captured into a bound state and a bound electron is
excited (inverse Auger effect). Then an Auger transition leads to the emission of the electron from the ion.
The corresponding cross-sections are very sensitive to the Auger rates and allow a detailed study of the
Breit interaction which is a current-current contribution to the static electron-electron interaction. The
contribution of the Breit interaction to the cross-section of resonant excitation on hydrogen-like uranium
ions is discussed and shown that it is roughly twice as large as in the case of dielectronic recombination.

PACS. 32.80.Hd Auger effect and inner-shell excitation or ionization – 32.80.Dz Autoionization

1 Introduction

Electron-ion recombination processes play an impor-
tant role for highly charged heavy ions found in high-
temperature plasmas or accelerators. These ions offer the
opportunity to study relativistic and QED-effects because
these effects grow proportionally to Z4 whereas binding
energies only increase with Z2 [1]. Autoionizing states of
highly charged heavy ions have to be considered because
the cross-sections for excitation, ionization and recombi-
nation are strongly influenced by these states [2]. In the
case of helium-like ions for instance excitation rates for
the ground state are doubled when autoionizing states are
included [3].

Here we consider electron-ion collisions with two-
electron processes where a first electron is captured and a
second electron is excited in the ion (inverse Auger pro-
cess). Then the excited ion can be stabilized by Auger
decay: resonant excitation (RE) or resonant electron scat-
tering, or by emission of a photon: dielectronic recombina-
tion (DR). Both processes are resonant, this means they
are possible only for certain energies of the free electron.

The Breit interaction [4,5] is a current-current correc-
tion to the static Coulomb interaction between electrons,
caused by the interaction of electrons with the radiation
field. It should be noted that the Breit interaction does not
provide a testing of modern QED theory which involves
the renormalization procedure, for example in the calcu-
lation of self-energy and vacuum polarization corrections.
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Our earlier studies of DR have shown that the Breit in-
teraction considerably enhances the Auger rates in highly
charged ions and thus the cross-sections [1,6–8]. Experi-
mental studies have proven this effect [9]. In order to study
the Breit interaction in greater detail, RE offers the ad-
vantage compared to DR that it depends on the sequence
of an inverse and direct Auger transition in capture and
emission of the electron, respectively.

The RE cross-section is very small compared with
cross-sections of DR or other processes like direct scatter-
ing. Interference with the direct scattering process could
therefore lead to terms of the same order as for RE itself.
To make a better comparison with experiments one should
develop a model that treats these processes together in a
unified framework. In this paper, we only concentrate on
KLL resonant processes where the electron scatters on a
hydrogen-like uranium ion. In this case the effects of the
Breit interaction are clearly present due to the relativistic
velocities of the K-shell electrons. We leave out inelas-
tic collisions since a double-excited LL-state can only de-
cay back into the ground state. Measurements of RE in
such systems are planned by Kozhuharov et al. [10] at the
experimental storage ring (ESR) of the Gesellschaft für
Schwerionenforschung (GSI) with a crossed-beam setup.

In the next section we present the formalism used for
calculating the cross-section of the resonant excitation.
We show the approximations made and the construction
of the wave function of the free electron. Cross-sections
for hydrogen-like systems and the influence of the Breit
interaction in RE in comparison to DR and its dependence
on Z are given in the following section. Finally, we present
an outlook on further developments. The units used are
atomic units: ~ = me = e = 1.



28 The European Physical Journal D

2 Theory

The Hamiltonian for N electrons and the radiation field
consists of three parts

H = He +Hr +Her (1)

with the electronic part

He =
N∑
i=1

(cαipi + (βi − 1)c2 + Vnuc(ri))

+
N−1∑
i=1

N∑
j=i+1

1
|ri − rj |

, (2)

the energy of the radiation field

Hr =
∑
kλ

ωka
+
kλakλ, (3)

and the interaction between electrons and radiation field

Her = −
N∑
i=1

∑
kλ

√
2πc2

V ωk
αi

×
(
ε∗kλe−ik·ria+

εkλ
+ εkλeik·riaεkλ

)
. (4)

We employ a formalism which has been used to calcu-
late photo recombination cross-sections [11]. The Hilbert
space is divided into three orthogonal spaces, for which
projection operators [12,13] are introduced [7]:

P =
∑

αiJiMims

∫
dΩpdεp|αiJiMi,pms; 0〉〈αiJiMi,pms; 0|,

(5)

Q =
∑

αdJdMd

|αdJdMd; 0〉〈αdJdMd; 0|, (6)

R =
∑

αrJrMr

∑
kλ

|αrJrMr; kλ〉〈αrJrMr; kλ|. (7)

The operator P projects on states consisting of a free elec-
tron with energy εp and N−1 bound electrons in an eigen-
state with energy Ei. The wave function Ψ(αiJiMipms)
is an eigenfunction of the operator PHP with the energy
Ep = Ei + εp. The intermediate bound states lying in the
Q space are described by the eigenfunctions Ψ(αdJdMd) of
QHQ with the energy Ed. Caused by the interaction with
the radiation field, the R space contains bound electrons
and a single photon with energy ωk. The corresponding
eigenfunctions to RHR are Ψ(αrJrMr; kλ) with the en-
ergy Ek = Er + ωk. The parameters α contain all the
remaining quantum numbers necessary to fully describe
the corresponding states. Neglecting states with two or
more photons we assume that P +Q+R = 1.

The normalizations for the functions are

〈αiJiMi,pms; 0|α′iJ ′iM ′i ,p′m′s; 0〉
= δαiα′iδJiJ′iδMiM′i

δmsm′s (8)

= δ(1)(εp − ε′p)δ(2)(p̂− p̂′), (9)

〈αdJdMd; 0|α′dJ ′dM ′d; 0〉 = δαdα′dδJdJ′dδMdM′d
, (10)

〈αrJrMr; kλ|α′rJ ′rM ′r; k′λ′〉 = δαrα′rδJrJ′rδMrM′rδkk′δλλ′.
(11)

The Hamiltonian can now be separated into

H = H0 + V (12)

with

H0 = PHP +QHQ+RHR (13)

and

V = PHQ+QHP + PHR+RHP +QHR+RHQ
(14)

where V is responsible for transitions between different
spaces.

The cross-section for RE can be written in time-
independent scattering theory [14]:

dσif =
2π
Fi
|〈αfJfMf ,pfmsf ; 0|T |αiJiMi,pimsi ; 0〉|2

× ρfdΩf , (15)

where Fi is the current of incoming electrons and ρf the
density of the final states. The transition operator T is
defined as in [15]:

T (z) = V + V G(z)V (16)

where

G(z) = [z −H]−1 = [z −H0 − V ]−1. (17)

It can be shown, similar to [11], that

T (z) = Λ(z) + Λ(z)QG(z)QΛ(z) (18)

with the level shift operator

Λ(z) = V + V C[C(z −H)C]−1CV (19)

and C = P +R.
Using the projection operator P for the initial and final

state we have

PT (z)P = PΛ(z)P + PΛ(z)QG(z)QΛ(z)P

= PV R[C(z −H)C]−1RV P

+ PΛ(z)QG(z)QΛ(z)P. (20)

The first term is a radiative correction of the continuum
states which we neglect here. The second term we approx-
imate [7] by

PT (z)P ≈ P (V + V RG0(z)RV )QG(z)
×Q (V + V RG0(z)RV )P (21)

= PVelQG(z)QVelP (22)
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with

G0(z) = [z −H0]−1 (23)
Vel = He +HerRG0(E)RHer, (24)

where we have substituted the operator PV R with Her.
The second term in Vel describes the interaction of elec-

trons through the exchange of a virtual photon creating
a quantum electrodynamical correction of the instanta-
neous Coulomb interaction. The imaginary parts of the
corresponding matrix elements are neglected in our calcu-
lations and the real parts can be described by the Breit
interaction, where ω is the energy of the exchanged virtual
photon:

VBreit =
N−1∑
i=1

N∑
j=i+1

[
−αi ·αj

cos(ωrij)
rij

+(αi ·∇i)(αj ·∇j)
cos(ωrij)− 1

ω2rij

]
. (25)

Let us assume an isolated resonant state d with energy
Ed (isolated resonance approximation). In reality the res-
onances can overlap due to the rather large decay widths
of the examined levels. A discussion of the interference of
overlapping resonances is given in Section 4. For a single
resonant state we can write

QG(z)Q = Q[Q(z −H0 − Λ(z))Q]−1Q (26)

=
∑
Md

|αdJdMd; 0〉〈αdJdMd; 0|
z −Ed −∆Ed + iΓd/2

, (27)

where ∆Ed is the shift of the resonance energy and Γd the
sum of the widths of radiative and Auger decays.

For the total cross-section of RE we have to sum (15)
over the quantum numbers of the final and resonant states
and to average over those of the initial state. Additionally,
we have to carry out integrals over the scattering angles
of the electron:

σRE
i→f =

∑
d

2π2

p2

Aa(d→ f)
Γd

Ld(E)Va(i→ d) (28)

with

Aa(d→ f) =
2π

2Jd + 1

×
∑

Mf ,Md,msf

∫
dΩe|〈αfJfMf ,pfmsf ; 0|Vel|αdJdMd; 0〉|2ρf

(29)

Ld(E) =
Γd/2π

(E −Ed −∆Ed)2 + Γ 2
d /4

, (30)

Va(i→ d) =
2π

2(2Ji + 1)

×
∑

Mi,Md,msi

∫
dΩp|〈αdJdMd; 0|Vel|αiJiMi,pimsi ; 0〉|2ρi.

(31)

Aa(d → f) is the rate for the Auger decay of the inter-
mediate resonant state d. It is related to the capture rate
Va(f → d) of the electron from the continuum state f to
the resonant state d by the theorem of detailed balance

Aa(d→ f) =
2(2Jf + 1)

2Jd + 1
Va(f → d). (32)

The wave functions of bound states are described by rel-
ativistic multiconfiguration state functions. They are cal-
culated with a multiconfiguration Dirac Fock method im-
plemented in the MCDF module provided by the GRASP
package [16]. For very heavy systems as heliumlike ura-
nium, the Coulomb interaction corrections are so small
that hydrogenlike Dirac wave functions could also be
applied instead of the Dirac-Fock wave functions. The
GRASP program is also used for the computation of the
radiative widths needed for the calculation of the total
width Γd of the resonant states. The energy shifts ∆Ed
in (27) contain corrections due to the Breit interaction
and radiative effects (self-energy and vacuum polariza-
tion) which are included in a perturbation approximation.

The wave function for the initial state is constructed as
an antisymmetrized product of a multiconfiguration func-
tion for the bound electrons and a continuum function for
the free electron:

Ψ(αiJiMipms) = A (Ψ(αiJiMi) · ψ(pms)) . (33)

For the continuum function solving the Dirac equation
with a screened Coulomb potential, a partial wave expan-
sion is necessary to obtain the momentum p and spin pro-
jection ms [17]

ψ(pms) =
∑
κµ

ilei∆κ
∑
ml

Y ∗lml(p̂)C(l
1
2
j|mlmsµ)ψpκµ(r).

(34)

∆κ are phase shifts which have to be chosen in a way
that the wave function satisfies the boundary condition
for a plane wave in the direction of p and an outgoing
scattered wave. ψpκµ(r) has the form of a single particle
wave function

ψpκµ(r) =
1
r

(
Ppκ(r) χκµ(r̂)
iQpκ(r) χ−κµ(r̂)

)
, (35)

χκµ =
∑
ms

C(l
1
2
j|mlmsµ)Ylml(r̂)φms . (36)

The normalizations are∫
ψ∗(pms)ψ(p′m′s)dV = δmsm′sδ(εp − ε

′
p)δ(p̂− p̂′),

(37)∫
ψ∗pκµ(r)ψp′κ′µ′(r)dV = δκκ′δµµ′δ(εp − ε′p). (38)
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Fig. 1. Total cross-section for KLL-RE on hydrogen-like
uranium as a function of the energy of the continuum electron.

Inserting the partial wave expansion into (33) we can write

Ψ(αiJiMipms) =
∑
κµ

ilei∆κ
∑
ml

Y ∗lml(p̂)C(l
1
2
j|mlmsµ)

×
∑
JM

C(JijJ |MiµM)

×
∑
r

cr(αiJi)Φ(γrJi; pκ;JM) (39)

where the antisymmetrized wave function Φ contains a
single continuum orbital. The orthogonality of the con-
tinuum orbital to the other states is achieved by using a
Schmidt orthogonalization procedure.

The functions ψpκµ are calculated by numerically solv-
ing the Dirac Fock equations containing the direct poten-
tial caused by the nucleus and the bound electrons. The
effects of the exchange potential can be neglected as ear-
lier calculations have shown. The difference method used
by GRASP for calculating bound states leads to unsatis-
fying results for continuum functions at distances far from
the nucleus. Therefore, we made use of another program
DE [18] for the numerical integration of the radial equa-
tion for the continuum states.

For the calculation of the normalization and the phase
shifts ∆κ we employ a method by Müller et al. [19]. Here,
an analytical solution of the Dirac equation for a screened
Coulomb potential with charge Z − N + 1 is used to de-
scribe the continuum function far away from the ion. At
a matching radius rm the ratios of the large and small
components of this outer function and of the numerically
obtained inner solution have to be equal

P
(i)
pκ (rm)

Q
(i)
pκ(rm)

=
P

(o)
pκ (rm)

Q
(o)
pκ (rm)

· (40)

From this condition one can derive equations for the phase
shifts ∆κ.

3 Results

In Figure 1 we present results of our calculations for the
total cross-section of RE on hydrogen-like uranium. In this
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Fig. 2. The effects of the Breit interaction on the KL1/2L1/2

resonance group for KLL-RE on hydrogen-like uranium. The
solid and dotted curves are calculated with and without the
Breit interaction in the Auger matrix elements.

case, we consider a bound 1s and a free electron in the
initial and final states. Because of the fine structure of the
L shell we get three distinct resonance groups at 64, 68.5
and 73 keV. The widths of the resonances lie in the range
of 30 to 56 eV and are nearly independent of the Breit
interaction since the major contributions come from the
radiative decay.

One typical behaviour of RE is the strong decrease of
the cross-section for the energetically higher resonances
which can not be found for the corresponding DR pro-
cesses. The largest contributions of the Breit interaction
to the Auger rates of highly charged heavy ions occur in
the energetically lower resonances, whereas smaller Auger
rates are found for higher resonances. Combined with the
fact that RE depends on the square of the Auger rate
A2
a and DR only linearly, the cross-sections for RE de-

crease faster with the electron energy than those for DR.
Since double excited resonant states in helium-like ura-
nium preferably decay through photon emission, the cross-
section for RE is about 70 times smaller than the one
for DR.

For a more detailed study of the effect of the Breit
interaction on the cross-section we show the RE cross-
section for the first resonance group in Figure 2. In this
group the first two of four resonances lie very close (13 eV)
giving rise to one single peak. The second peak resulting
from the third resonance is also visible in the dotted curve
which is calculated with the Coulomb interaction only.
After inclusion of the Breit interaction (full curve) the first
two resonances are much more enlarged and dominate the
whole resonance group. Only the right shoulder is slighty
affected by the third resonance.

The influence of the Breit interaction on all resonances
is depicted in Figure 3 where the energy-integrated cross-
sections for KLL-RE on hydrogen-like uranium for all
10 LL-resonant states are presented. The lowest two reso-
nances contribute most (about three quarters) to the to-
tal cross-section. The Breit interaction is responsible for
a large part of these cross-sections, especially in the case
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Fig. 3. The effects of the Breit interaction on the energy-
integrated cross-section for KLL-RE on hydrogen-like uranium.
Grey and dark bars are obtained without and with the Breit
interaction, respectively.
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Fig. 4. Percentage of the Breit contribution of each
LL-resonance to the total cross-section for DR (grey bars) and
RE (dark bars) on hydrogen-like uranium.

of the first resonance because the corresponding transition
is nonrelativistically forbidden.

Figure 4 compares the percentage of the Breit interac-
tion of each LL-resonance on the total DR and RE cross-
sections for hydrogen-like uranium. The percentage for RE
of the first three levels is much larger than for DR. The
Breit term of the first resonance even contributes about
one third to the total cross-section for RE, but only 15%
for DR. It seems that for levels where the inclusion of the
Breit interaction is absolutely necessary the percentage of
the Breit term is larger for RE than for DR. For other lev-
els (levels 4–7 or levels in systems with more electrons) the
percentage of the Breit term is smaller, but also the cross-
sections are smaller (see Fig. 3, levels 4–7). Summing up
all contributions we find that 60% of the RE cross-section
is caused by Breit interaction, twice as much as for DR.

Since the Breit interaction is a relativistic effect, this
effect should have a strong dependence on the charge of
the ion. Figure 5 gives the percentage of the Breit con-
tribution to the KLL cross-section on hydrogen-like ions
of the first and second resonance as a function of the
ion charge Z. Since the first resonance (full curve) is
non-relativistically forbidden, even small Breit matrix el-
ements can lead to a high percentage for small values of
Z. The Breit contribution in the case of the second reso-
nance (dotted curve) continues to rise slowly with Z until
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Fig. 5. Percentage of the contribution of Breit interaction to
the KLL cross-section for RE energy-integrated over the first
and second resonances (full and dotted curves) and over all
resonances (broken curve) for hydrogen-like ions.

it reaches its maximum value for uranium. The same be-
haviour can be seen for the Breit contribution to the total
KLL cross-section (broken curve).

4 Summary and outlook

The Breit interaction is very important for resonant exci-
tation or resonant scattering of electrons on highly charged
heavy ions. KLL-Auger rates and, therefore, cross-sections
are appreciably increased by this interaction. A drawback
for experimental studies of this effect in RE might be that
the total cross-sections are very small due to the small
Auger widths in comparison to the radiative widths.

As can be seen in Figure 2 the use of the isolated reso-
nance approximation is not fully justified. Further calcula-
tions could study the effects of overlapping resonances on
the cross-sections. Karasiov et al. [20] have done this for
DR and radiative recombination (RR) and found that the
overlapping resonance effect is comparable with the DR-
RR interference effect and reaches about 30% for uranium
in the region between two resonances in the KLL transi-
tion. According to Shabaev [21] the effect of the over-
lapping resonances gives a dominant contribution to the
asymmetry parameter characterizing a deviation of the
resonance line shape from the Lorentz-type form. Also it
might be prospective to calculate interferences between
RE and direct scattering. Since the cross-sections for di-
rect electron scattering on heavy ions are orders of mag-
nitude larger, the interference term might even be greater
than the RE cross-section.
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